Dipole Modifiers Regulate Lipid Lateral Heterogeneity in Model Membranes
نویسندگان
چکیده
In this study we report on experimental observations of giant unilamellar liposomes composed of ternary mixtures of cholesterol (Chol), phospholipids with relatively low Tmelt (DOPC, POPC, or DPoPC) and high Tmelt (sphingomyelin (SM), or tetramyristoyl cardiolipin (TMCL)) and their phase behaviors in the presence and absence of dipole modifiers. It was shown that the ratios of liposomes exhibiting noticeable phase separation decrease in the series POPC, DOPC, DPoPC regardless of any high-Tmelt lipid. Substitution of SM for TMCL led to increased lipid phase segregation. Taking into account the fact that the first and second cases corresponded to a reduction in the thickness of the lipid domains enriched in low- and high-Tmelt lipids, respectively, our findings indicate that the phase behavior depends on thickness mismatch between the ordered and disordered domains. The dipole modifiers, flavonoids and styrylpyridinium dyes, reduced the phase segregation of membranes composed of SM, Chol, and POPC (or DOPC). The other ternary lipid mixtures tested were not affected by the addition of dipole modifiers. It is suggested that dipole modifiers address the hydrophobic mismatch through fluidization of the ordered and disordered domains. The ability of a modifier to partition into the membrane and fluidize the domains was dictated by the hydrophobicity of modifier molecules, their geometric shape, and the packing density of domain-forming lipids. Phloretin, RH 421, and RH 237 proved the most potent among all the modifiers examined.
منابع مشابه
The Interaction of Dipole Modifiers with Polyene-Sterol Complexes
Recently, we showed that the effect of dipole modifiers (flavonoids and styrylpyridinium dyes) on the conductance of single amphotericin B (AmB) channels in sterol-containing lipid bilayers primarily resulted from changes in the membrane dipole potential. The present study examines the effect of dipole modifiers on the AmB multi-channel activity. The addition of phloretin to cholesterol-contain...
متن کاملModifiers of the Dipole Potential of Lipid Bilayers.
This paper assesses the magnitude of change in the dipole potential (φd) of membranes caused by the adsorption of modifiers on lipid bilayers of various compositions. We tested flavonoids, muscle relaxants, thyroid hormones, and xanthene and styrylpyridinium dyes in order to assess their dipole-modifying properties. A quantitative description of the modifying action of flavonoids, muscle relaxa...
متن کاملBoundary potential of lipid bilayers: methods, interpretations and biological applications
The electric field distribution at boundaries of cell membranes consists of diffuse part of the electrical double layer and the potential drop over the polar area generally attributed to dipole effects. This report focuses on the molecular nature of dipole components of boundary potential and its relation to bilayer structure as it follows from different experimental approaches and molecular dy...
متن کاملTwo cations, two mechanisms: interactions of sodium and calcium with zwitterionic lipid membranes.
Adsorption of metal cations onto a cellular membrane changes its properties, such as interactions with charged moieties or the propensity for membrane fusion. It is, however, unclear whether cells can regulate ion adsorption and the related functions via locally adjusting their membrane composition. We employed fluorescence techniques and computer simulations to determine how the presence of ch...
متن کاملLipid packing drives the segregation of transmembrane helices into disordered lipid domains in model membranes.
Cell membranes are comprised of multicomponent lipid and protein mixtures that exhibit a complex partitioning behavior. Regions of structural and compositional heterogeneity play a major role in the sorting and self-assembly of proteins, and their clustering into higher-order oligomers. Here, we use computer simulations and optical microscopy to study the sorting of transmembrane helices into t...
متن کامل